
RANDOM PROJECTIONS
FOR SEARCH AND MACHINE LEARNING

Stefan Savev

Berlin Buzzwords

June 2015

= +



KEYWORD-BASED SEARCH

Document Data

 300 unique words per document

 300 000 words in vocabulary

 Data sparsity: 99.9%

 Words are strong query features
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IMAGE SEARCH BY EXAMPLE

Image Data

 800 pixels

 200 black pixels

 Data sparsity 80%

 Pixels are weak query features
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TWO KINDS OF SEARCH

Data Sparse Dense

Query Size Short Long

Use Cases Keyword Search Image Search, Semantic 

Search, 

Recommendations

SEARCH

METHOD

INVERTED

INDEX (LUCENE)

RANDOM 

PROJECTIONS
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OUTLINE

1. High dimensional data (images, text, clicks)

2. Random Projections: Why? What? How? 

3. Image Search Benchmark
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HIGH-DIMENSIONAL DATA

Images
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HIGH-DIMENSIONAL DATA

Images

Pixels
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HIGH-DIMENSIONAL DATA

Images
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Dimensions

Pixels
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MATRIX REPRESENTATION OF DATASET

…
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MATRIX REPRESENTATION OF DATASET

…
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HIGH-DIMENSIONAL DATA

Text

A beer can do everyone a 

favor. 
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HIGH-DIMENSIONAL DATA

Clicks

… … … …

1 0 0
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DENSE VS SPARSE MATRIX
IMAGES

1000 PIXELS

TEXT/CLICKS

300000 WORDS

CAN SEARCH WITH LUCENE
CANNOT SEARCH 

WITH LUCENE
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DENSE VS SPARSE MATRIX
IMAGES

1000 PIXELS

TEXT/CLICKS

300000 WORDS

CAN SEARCH WITH LUCENE
CANNOT SEARCH 

WITH LUCENE
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DENSE VS SPARSE MATRIX
IMAGES

1000 PIXELS

TEXT/CLICKS

300000 WORDS

CAN SEARCH WITH LUCENE
CANNOT SEARCH 

WITH LUCENE
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img_1

img_3

img_n

doc_1

doc_3

doc_n

TEXT/CLICKS

500 DIMENSIONS

WITH RANDOM 

PROJECTIONS

WITH RANDOM 

PROJECTIONS
WITH RANDOM 

PROJECTIONS

WITH LUCENE



DIMENSIONALITY REDUCTION
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300000 dimensions

doc_1

doc_3

doc_n

500 dimensions

beer wine beer + wine

SVD



DIMENSIONALITY REDUCTION = PATTERN DISCOVERY
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APPLICATIONS 

Random 
Projections

Random 
Forest

SVM

BoostingSVD

Search

(Nearest

Neighbor)
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RANDOM PROJECTIONS IN INDUSTRY

 Spotify for music recommendations
 https://github.com/spotify/annoy

 Etsy for user/product recommendations
 “Style in the Long Tail: Discovering Unique Interests with Latent Variable Models in Large 
Scale Social E-commerce”, Diane Hu, Rob Hall, Josh Attenberg

 Referred to as Locality Sensitive Hashing
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https://github.com/spotify/annoy


OUTLINE

1. High dimensional data (images, text, clicks)

2. Random Projections: Why? What? How? 

3. Image Search Benchmark
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HOW DOES IT WORK?

= +
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ILLUSTRATION ON ARTIFICIAL DATASET
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ILLUSTRATION ON ARTIFICIAL DATASET

Nearest neighbor problem: Find the closest point
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Approximation: Neighbors are in a circle with 

small radius

ILLUSTRATION ON ARTIFICIAL DATASET
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Core idea: random grids

 Dynamic grids (variably sized)

 Random = cheap

ILLUSTRATION ON ARTIFICIAL DATASET
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PARTITION BY RANDOM SPLITS
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Hyperplane splits 

the dataset



PROJECTION = ONE DIMENSIONAL VIEW OF DATASET

Random Direction

(1 Dimension)
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Random Direction

(1 Dimension)
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PARTITIONING BY PROJECTING ON 
RANDOM LINES
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PARTITIONING BY PROJECTING ON 
RANDOM LINES
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ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION
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When two points are close, 

they are likely to end up

in the same partition,

even under 

random partitioning



ALGORITHM VISUALIZATION
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When two points are close, 

they are LIKELY to end 

up in the same partition,

even under 

random partitioning



MULTIPLE TREES

Random tree partitioning is noisy. Build more trees.
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ADDING MORE TREES

Tree 1 Trees 1 and 2 Trees 1, 2 and 3
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ADDING MORE TREES

Trees 1 - 50 Trees 1 - 100
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CONSTRAINING THE NEAREST NEIGHBOR REGION

THRESHOLD = In how many trees a “NN candidate” appears

Threshold = 1 Threshold = 60Threshold = 20
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“WE’VE GOT HIM”
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OUTLINE

1. High dimensional data (images, text, clicks)

2. Random Projections: Why? What? How? 

3. Image Search Benchmark
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IMAGE SEARCH FOR PREDICTION
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Results

Image Label

5

3

3

IMAGE SEARCH FOR PREDICTION



STAGE 1: INDEXING
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42 000 examples with labels

784 pixels per image



STAGE 1: INDEXING
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42 000 examples with labels

784 pixels per image



STAGE 1: INDEXING

index = Index(...)

for image in training_examples:

labels[image.id] = image.label

index.add_item(image.id,

image.vector)

index.build(...)
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42 000 examples with labels

784 pixels per image



STAGE 2: SEARCH TO PREDICT THE LABEL
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index.load('.../file.index')

...

image_vec = read_image(...)

nn = 100 #number of nearest neighbors

results = index.get_nns_by_vector(image_vec,nn)

top_result = results[0]

predicted_label = labels[top_result.id]

Results

Image Label

5

3

3

28 000 test examples



TOOLS
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stefansavev.com/randomtrees



BENCHMARK IMAGE SEARCH

DIMENSIONS # TREES # NN

CANDIDATES

ACCURACY 

ON TEST

SEARCH TIME 

[ms/query]

784 10 1000-1010 97.0 4.85
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Reference: https://github.com/stefansavev/random-projections-talk/

BOTTLENECK



BENCHMARK IMAGE SEARCH

DIMENSIONS # TREES # NN

CANDIDATES

ACCURACY 

ON TEST

SEARCH TIME 

[ms/query]

784 10 1000-1010 97.0 4.85

100, 

after SVD

10 1000-1010 97.5 0.7
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BENCHMARK IMAGE SEARCH

DIMENSIONS # TREES # NN

CANDIDATES

ACCURACY 

ON TEST

SEARCH TIME 

[ms/query]

784 10 1000-1010 97.0 4.85

100, 

after SVD

10 1000-1010 97.5 0.7

100,

after SVD

40 180 (mean) 97.5 0.36
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Reference: https://github.com/stefansavev/random-projections-talk/

stefansavev.com/

randomtrees



SAME FOUNDATION FOR SEARCH AND 
MACHINE LEARNING
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SAME FOUNDATION FOR SEARCH AND 
MACHINE LEARNING
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label frequency

“0” 4

“1” 51

… …

“7” 38

… …

Histogram



CONCLUSION

 Search in Dense Data

 CHEAP method to “explore” data; Makes algorithms FASTER 
(e.g. SVD, SVM)
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Stefan Savev

Email: info@stefansavev.com

Blog: stefansavev.com

THANK YOU!

mailto:info@stefansavev.com


EXTRA SLIDES
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ADVANTAGES/DISADVANTAGES
DIMENSIONALITY REDUCTION

Advantages

“Semantic Similarity”

“Concentrate the signal”

Disadvantages

No exact matches possible

Adds noise

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 2015 60



RANDOM PROJECTIONS AS HASH FUNCTIONS
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EXAMPLE-BASED IMAGE SEARCH

 MNIST image dataset of digits

 Images are digits from 0 to 9

 42 000 images for training

 28 000 images for test

 28 x 28 pixels with values from 0 to 255

 784 (=28*28) features

 Dataset is already preprocessed

 Goal is to predict the label of an image
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SOME IMPLEMENTATION TRICKS

 sparse random projections  combine not all dimension but a small number of them

 apply dimensionality reduction first

 pick better random projections  the projected histogram is wide

 project on multiple lines simultaneously  Hadamard matrix trick

 reuse random projections via recombination

 cut out a “ball” from the densest region 

 PCA may help

 use the neighbors of neighbors of a point as additional similarity candidates

advanced search inside the trees with backtracking (KD-tree style)

generate multiple versions of query/training data (i.e. for image data translate or rotate the image)

[Link to Blog]
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PROJECTION

 Dot product (cosine, similarity)

 View of the dataset

 Overlap with Pattern

 “Geometry” of Search

 Foundation for Search and Machine Learning
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WHY RANDOM?

 Cheap (replace optimization with randomization); Simply build more trees

 If we build the perfect tree, it’s just one tree. We need more and DIVERSE trees

 In high dimensions all algorithms will have problems, so do the cheapest

 With a few points/dimensions random is not the best choice
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DIMENSIONALITY REDUCTION
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300000 WORDS

doc_1

doc_3

doc_n

500 DIMENSIONS

beer

wine

beer + wine

SVD

MIXING THE 

COLUMNS 

OF THE ORIGINAL 

MATRIX TO MAXIMIZE 

SIGNAL TO NOISE



PROJECTION = OVERLAP WITH A PATTERN
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,OVERLAP

=SUM 1, more red

-1, more green
=



PROJECTION = OVERLAP WITH A PATTERN
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,OVERLAP =SUM



PROJECTION = OVERLAP WITH A PATTERN

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 2015 69

, =OVERLAP( ) SUM



1, if more red pixels than white

-1, if more white pixels than red

PROJECTION = OVERLAP WITH A PATTERN
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, =OVERLAP( ) SUM

=



PROJECTION = OVERLAP WITH A PATTERN
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, =OVERLAP( ) SUM

1, if more red pixels than white

-1, if more white pixels than red
=



DATA POINT – SVD FEATURE – RANDOM FEATURE
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PLATO’S ALEGORY OF THE CAVE

He then explains how the philosopher is like a prisoner who is freed from the cave 
and comes to understand that the shadows on the wall do not make up reality at all, 
as he can perceive the true form of reality rather than the mere shadows seen by the 
prisoners

Source: http://en.wikipedia.org/wiki/Allegory_of_the_Cave
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SECRET SAUCE

 How to make it faster?

 How to make it more accurate?

 When does it work?

 Is there something better?
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http://stefansavev.com/random-projections-secretsouce.html


