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KEYWORD-BASED SEARCH

Document Data

ü300 unique words per document

ü300 000 words in vocabulary

üData sparsity: 99.9%

üWords are strong query features
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IMAGE SEARCH BY EXAMPLE

Image Data

ü800 pixels

ü200 black pixels

üData sparsity80%

üPixels are weak query features
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TWO KINDS OF SEARCH

Data Sparse Dense

Query Size Short Long

Use Cases Keyword Search Image Search, Semantic 

Search, 

Recommendations

SEARCH

METHOD

INVERTED

INDEX (LUCENE)

RANDOM 

PROJECTIONS
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OUTLINE

1. High dimensional data (images, text, clicks)

2. Random Projections: Why? What? How? 

3. Image Search Benchmark
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HIGH-DIMENSIONAL DATA

Images
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HIGH-DIMENSIONAL DATA

Images

Pixels
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HIGH-DIMENSIONAL DATA

Images
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Dimensions

Pixels
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MATRIX REPRESENTATION OF DATASET

é
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MATRIX REPRESENTATION OF DATASET

é
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HIGH-DIMENSIONAL DATA

Text

A beer can do everyone a 

favor. 
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Dimensions



HIGH-DIMENSIONAL DATA

Clicks

é é é é

1 0 0
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DENSE VS SPARSE MATRIX
IMAGES

1000 PIXELS

TEXT/CLICKS

300000 WORDS

CAN SEARCH WITH LUCENE
CANNOT SEARCH 

WITH LUCENE

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201513

img_1

img_3

img_n

doc_1

doc_3

doc_n



DENSE VS SPARSE MATRIX
IMAGES
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TEXT/CLICKS
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DENSE VS SPARSE MATRIX
IMAGES

1000 PIXELS

TEXT/CLICKS

300000 WORDS

CAN SEARCH WITH LUCENE
CANNOT SEARCH 

WITH LUCENE
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TEXT/CLICKS

500 DIMENSIONS

WITH RANDOM 

PROJECTIONS

WITH RANDOM 

PROJECTIONS
WITH RANDOM 
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DIMENSIONALITY REDUCTION
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300000 dimensions

doc_1

doc_3

doc_n

500 dimensions

beer wine beer+ wine

SVD



DIMENSIONALITY REDUCTION = PATTERN DISCOVERY
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APPLICATIONS 

Random 
Projections

Random 
Forest

SVM

BoostingSVD

Search

(Nearest

Neighbor)
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RANDOM PROJECTIONS IN INDUSTRY

ÍSpotify for music recommendations
Íhttps://github.com/spotify/annoy

ÍEtsyfor user/product recommendations
ÍòStyle in the Long Tail: Discovering Unique Interests with Latent Variable Models in Large 
Scale Social E-commerceó, Diane Hu, Rob Hall, Josh Attenberg

ÍReferred to as Locality Sensitive Hashing
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https://github.com/spotify/annoy


OUTLINE

1. High dimensional data (images, text, clicks)

2. Random Projections: Why? What? How? 

3. Image Search Benchmark
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HOW DOES IT WORK?

= +
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ILLUSTRATION ON ARTIFICIAL DATASET
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ILLUSTRATION ON ARTIFICIAL DATASET

Nearest neighbor problem: Find the closest point
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Approximation: Neighbors are in a circle with 

small radius

ILLUSTRATION ON ARTIFICIAL DATASET
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Core idea: random grids

ÍDynamic grids (variably sized)

ÍRandom = cheap

ILLUSTRATION ON ARTIFICIAL DATASET
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PARTITION BY RANDOM SPLITS
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Hyperplanesplits 

the dataset



PROJECTION = ONE DIMENSIONAL VIEW OF DATASET

Random Direction

(1 Dimension)

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201527

A



Random Direction

(1 Dimension)
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PARTITIONING BY PROJECTING ON 
RANDOM LINES
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PARTITIONING BY PROJECTING ON 
RANDOM LINES
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ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201533



ALGORITHM VISUALIZATION
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ALGORITHM VISUALIZATION
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they are likely to end up

in the same partition,

even under 

random partitioning



ALGORITHM VISUALIZATION
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When two points are close, 

they are LIKELYto end 

up in the same partition,

even under 

random partitioning



MULTIPLE TREES

Random tree partitioning is noisy. Build more trees.
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ADDING MORE TREES

Tree 1 Trees 1 and 2 Trees 1, 2 and 3
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ADDING MORE TREES

Trees 1 - 50 Trees 1 - 100
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CONSTRAINING THE NEAREST NEIGHBOR REGION

THRESHOLD = In how many trees a òNN candidateó appears

Threshold = 1 Threshold = 60Threshold = 20
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òWEõVE GOT HIMó
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OUTLINE

1. High dimensional data (images, text, clicks)

2. Random Projections: Why? What? How? 

3. Image Search Benchmark

42STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 2015



STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201543

IMAGE SEARCH FOR PREDICTION
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Results

Image Label
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IMAGE SEARCH FOR PREDICTION



STAGE 1: INDEXING
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STAGE 1: INDEXING
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STAGE 1: INDEXING

index = Index(...)

for image in training_examples :

labels [image.id] = image. label

index.add_item (image. id ,

image. vector )

index.build (...)
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42 000 examples with labels

784 pixels per image



STAGE 2: SEARCH TO PREDICT THE LABEL

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201548

index.load ('.../ file.index ')

...

image_vec = read_image (...)

nn = 100 #number of nearest neighbors

results = index.get_nns_by_vector ( image_vec,nn )

top_result = results[0]

predicted_label = labels[ top_result .id]

Results

Image Label

5

3

3

28 000 test examples



TOOLS
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stefansavev.com/randomtrees



BENCHMARK IMAGE SEARCH

DIMENSIONS# TREES # NN

CANDIDATES

ACCURACY 

ON TEST

SEARCH TIME 

[ms/query]

784 10 1000-1010 97.0 4.85
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Reference: https://github.com/stefansavev/random-projections-talk/

BOTTLENECK



BENCHMARK IMAGE SEARCH

DIMENSIONS# TREES # NN

CANDIDATES

ACCURACY 

ON TEST

SEARCH TIME 

[ms/query]

784 10 1000-1010 97.0 4.85

100, 

after SVD

10 1000-1010 97.5 0.7
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Reference: https://github.com/stefansavev/random-projections-talk/
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BENCHMARK IMAGE SEARCH

DIMENSIONS# TREES # NN

CANDIDATES

ACCURACY 

ON TEST

SEARCH TIME 

[ms/query]

784 10 1000-1010 97.0 4.85

100, 

after SVD

10 1000-1010 97.5 0.7

100,

after SVD

40 180 (mean) 97.5 0.36
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Reference: https://github.com/stefansavev/random-projections-talk/

stefansavev.com/

randomtrees



SAME FOUNDATION FOR SEARCHAND 
MACHINE LEARNING
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SAME FOUNDATION FOR SEARCHAND 
MACHINE LEARNING
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label frequency
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CONCLUSION

üSearch in DenseData

üCHEAPmethod to òexploreó data; Makes algorithms FASTER 
(e.g. SVD, SVM)

STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201556

= +



STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 201557

Stefan Savev

Email: info@stefansavev.com

Blog: stefansavev.com

THANK YOU!
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