

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING

Stefan Savev

Berlin Buzzwords June 2015

KEYWORD-BASED SEARCH

Document Data

- > 300 unique words per document
- > 300 000 words in vocabulary
- Data sparsity: 99.9%
- > Words are strong query features

IMAGE SEARCH BY EXAMPLE

Image Data

- > 800 pixels
- > 200 black pixels
- Data sparsity 80%
- Pixels are weak query features

J
~
I

TWO KINDS OF SEARCH

Data	Sparse	Dense
Query Size	Short	Long
Use Cases	Keyword Search	Image Search, Semantic Search, Recommendations
SEARCH METHOD	INVERTED INDEX (LUCENE)	RANDOM PROJECTIONS

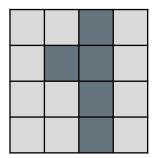
OUTLINE

High dimensional data (images, text, clicks)
 Random Projections: Why? What? How?
 Image Search Benchmark

Images

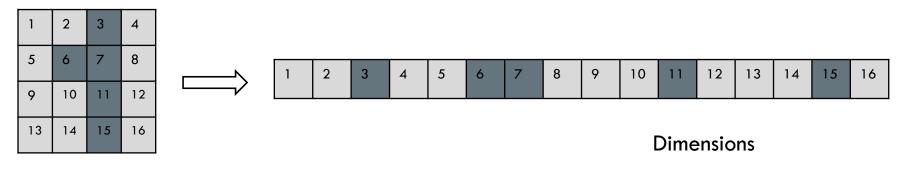
STEFAN SAVEV \sim random projections for Big data \sim Berlin Buzzwords \sim June 2015 6

Images



Pixels

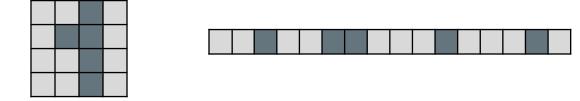
Images

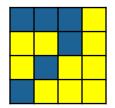


Pixels

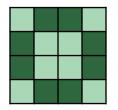
STEFAN SAVEV \sim random projections for Big data \sim Berlin Buzzwords \sim June 2015 8

MATRIX REPRESENTATION OF DATASET

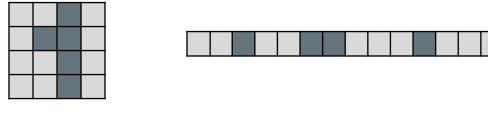


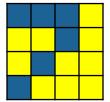


. . .



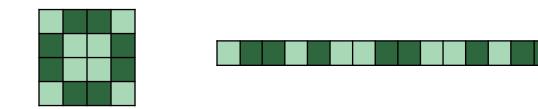
MATRIX REPRESENTATION OF DATASET



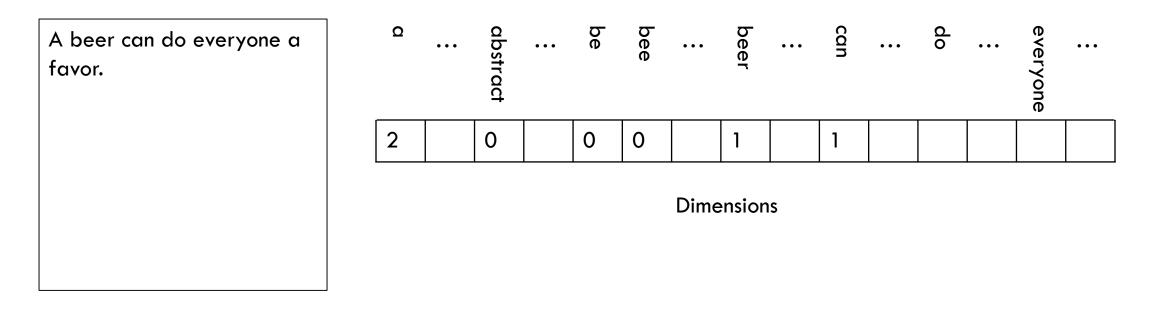


• • •													

. . .



Text



Clicks

Analytics in a Big Data World The Essential Guide to Data Science and its Applications

by Bart Baesens Wiley and SAS Business Series

The guide to targeting and leveraging business opportunitiesusing big data & analytics By leveraging big data & analytics, businesses create thepotential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analyticsin... *Read more*

Harness Oil and Gas Big Data with Analytics Optimize Exploration and Production with Data Driven Models

by Keith Holdaway

Wiley and SAS Business Series

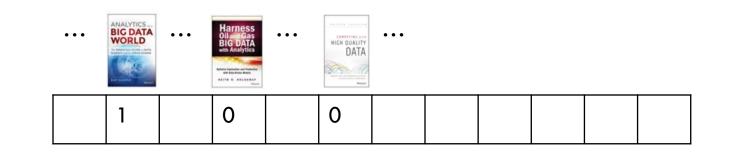
Use big data analytics to efficiently drive oil and gasexploration and production Harness Oil and Gas Big Data with Analytics provides acomplete view of big data and analytics techniques as they areapplied to the oil and gas industry. Including a compendium ofspecific case... *Read more*

Competing with High Quality Data

Concepts, Tools, and Techniques for Building a Successful Approach to Data Qu...

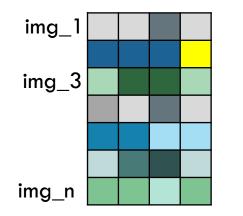
by Rajesh Jugulum

Create a competitive advantage with data quality Data is rapidly becoming the powerhouse of industry, butlow-quality data can actually put a company at a disadvantage. Tobe used effectively, data must accurately reflect the real-worldscenario it represents, and it 1... *Read more*

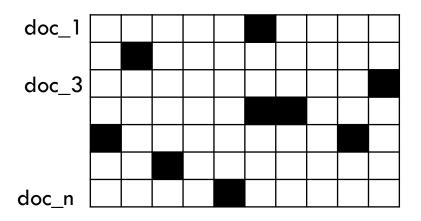


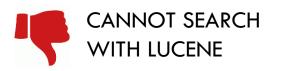
DENSE VS SPARSE MATRIX

IMAGES 1000 PIXELS



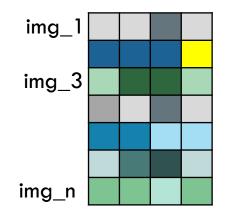
TEXT/CLICKS 300000 WORDS

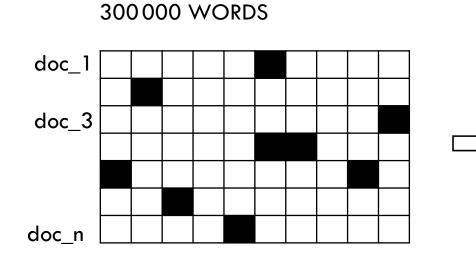




DENSE VS SPARSE MATRIX

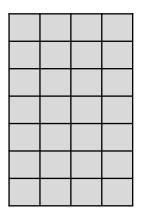
IMAGES 1000 PIXELS

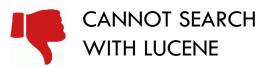




TEXT/CLICKS

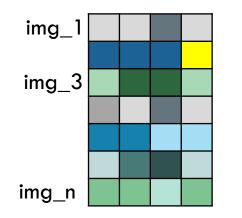
TEXT/CLICKS 500 DIMENSIONS

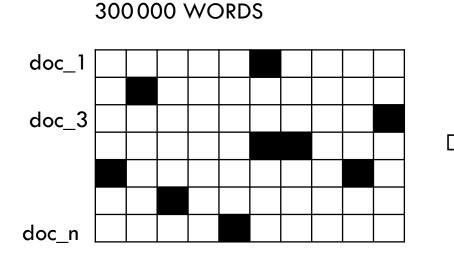




DENSE VS SPARSE MATRIX

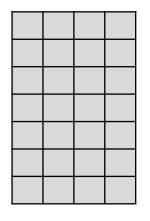
IMAGES 1000 PIXELS





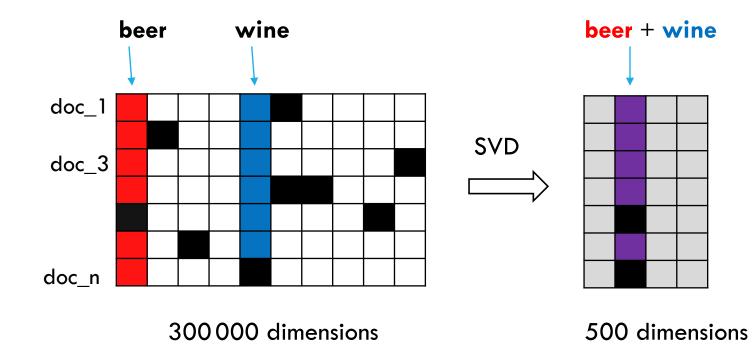
TEXT/CLICKS

TEXT/CLICKS 500 DIMENSIONS

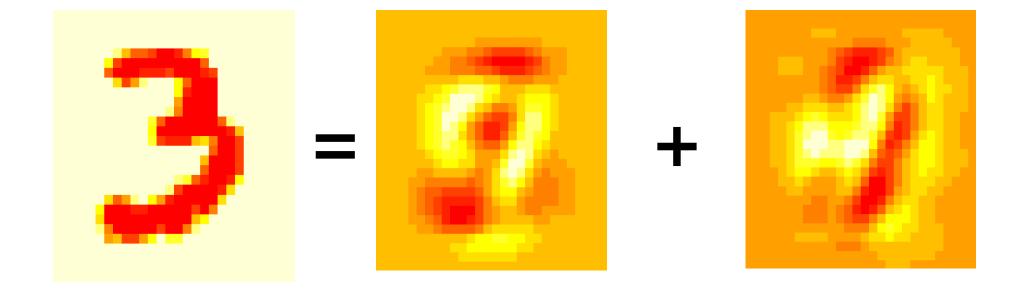


CANNOT SEARCH WITH LUCENE

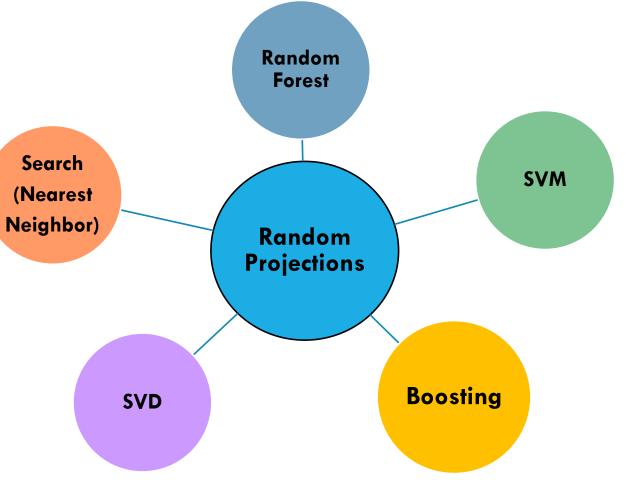
DIMENSIONALITY REDUCTION



DIMENSIONALITY REDUCTION = PATTERN DISCOVERY



APPLICATIONS



RANDOM PROJECTIONS IN INDUSTRY

Spotify for music recommendations

<u>https://github.com/spotify/annoy</u>

Etsy

Spotify[®]

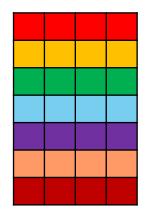
Etsy for user/product recommendations

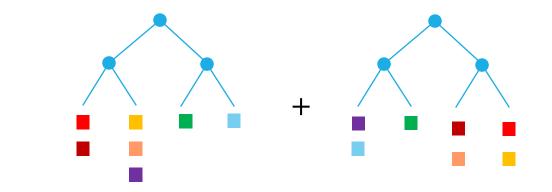
- "Style in the Long Tail: Discovering Unique Interests with Latent Variable Models in Large Scale Social E-commerce", Diane Hu, Rob Hall, Josh Attenberg
- Referred to as Locality Sensitive Hashing

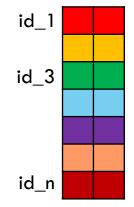
OUTLINE

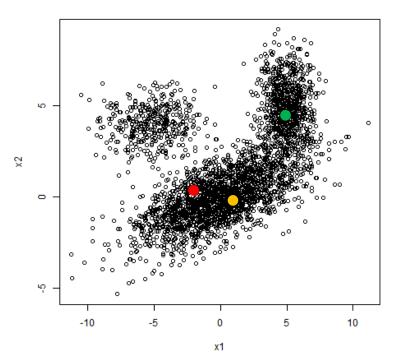
High dimensional data (images, text, clicks)
 Random Projections: Why? What? How?
 Image Search Benchmark

HOW DOES IT WORK?

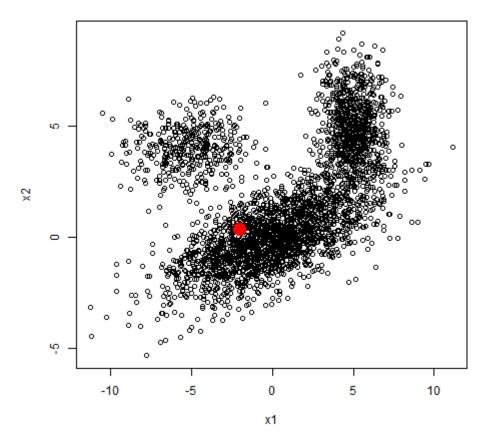


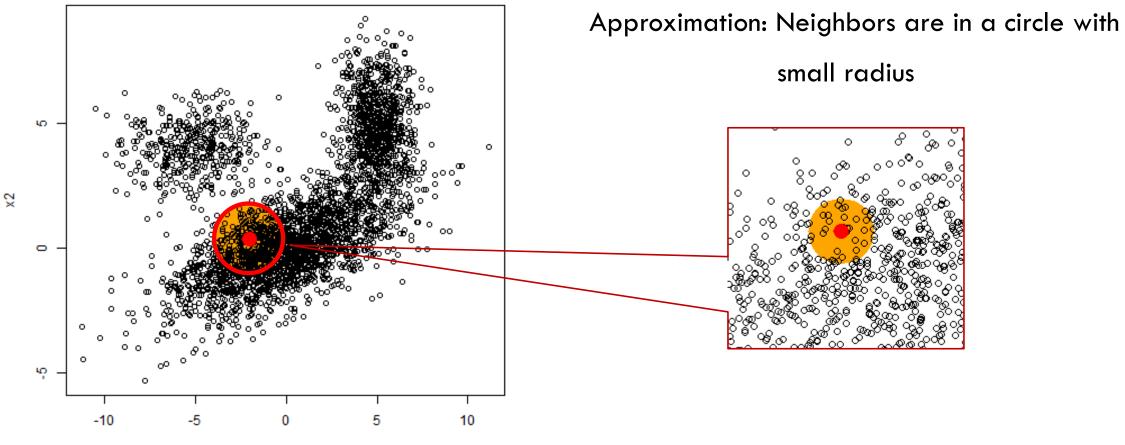


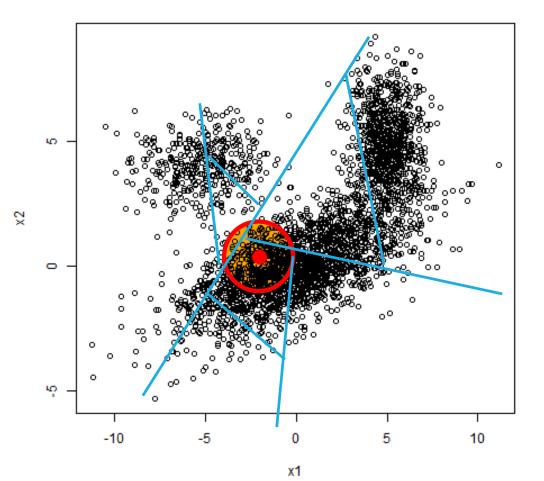




Nearest neighbor problem: Find the closest point

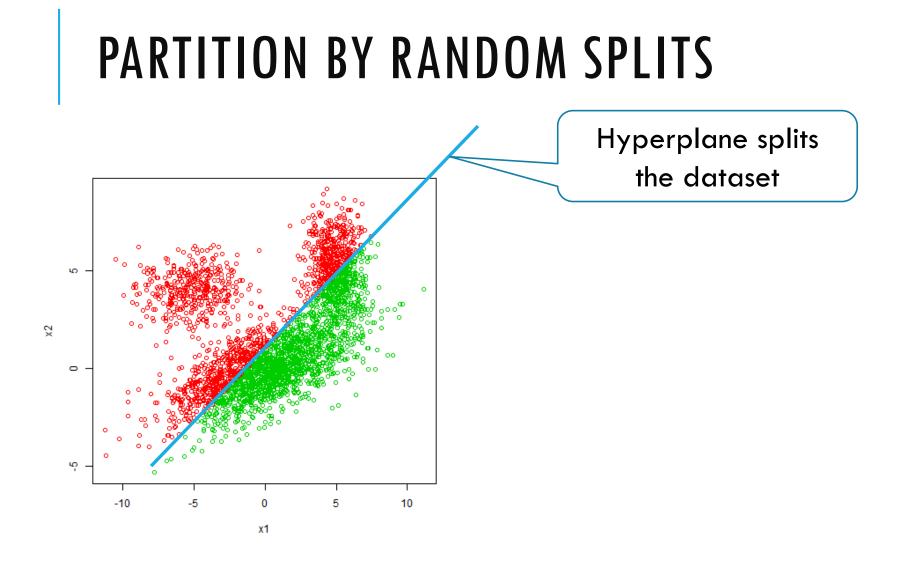






Core idea: random grids

- Dynamic grids (variably sized)
- Random = cheap



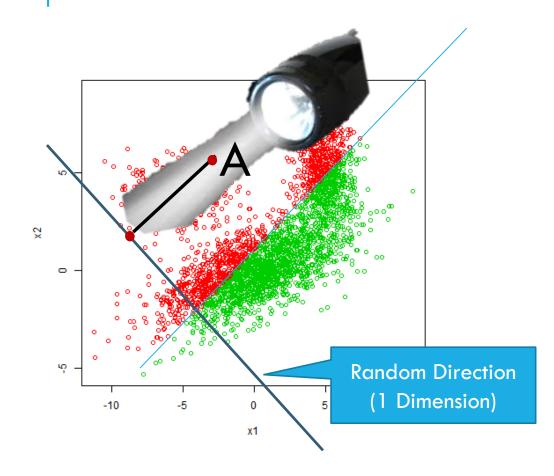
PROJECTION = ONE DIMENSIONAL VIEW OF DATASET

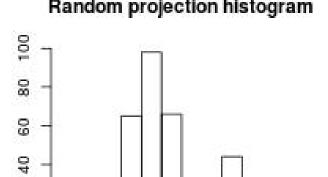
Frequency

20

 \bigcirc

-2





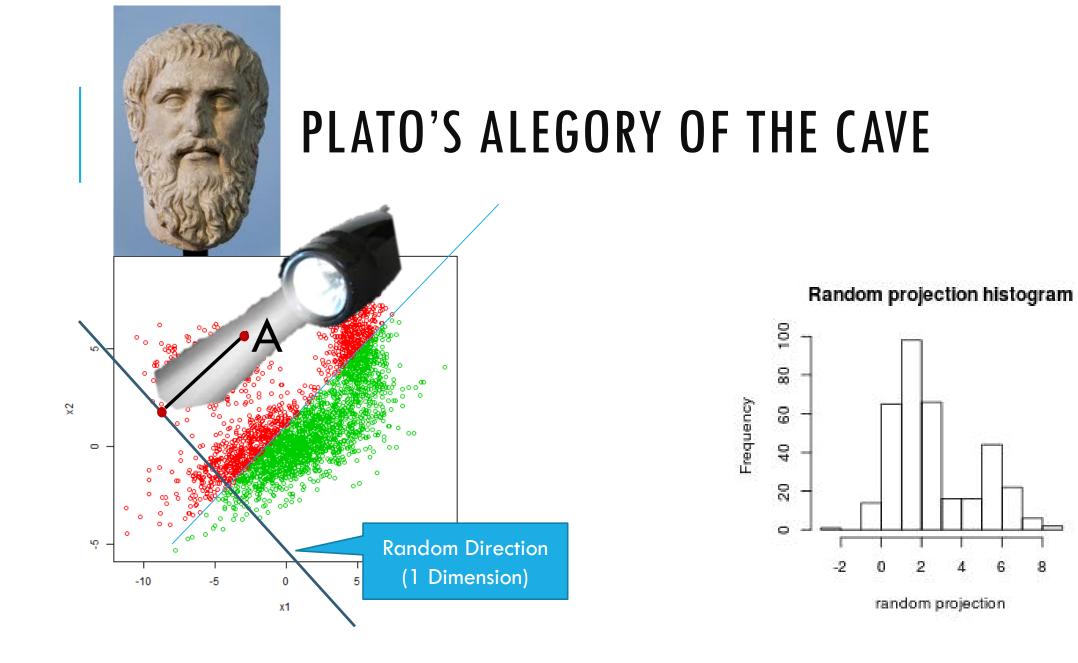
 $\mathbf{2}$

random projection

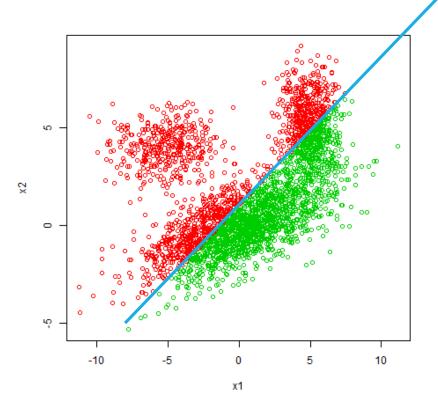
Random projection histogram

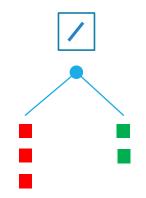
8

6

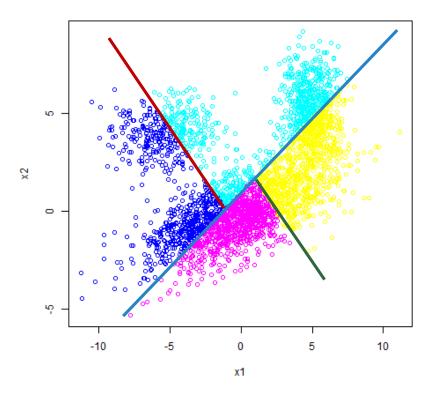


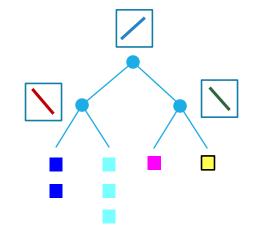
PARTITIONING BY PROJECTING ON RANDOM LINES

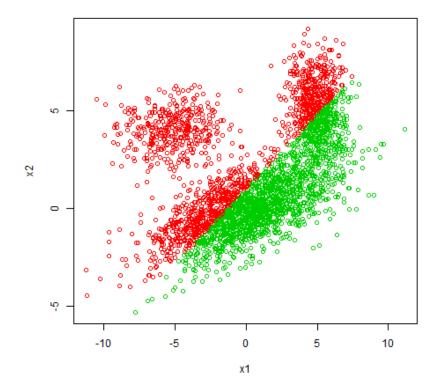


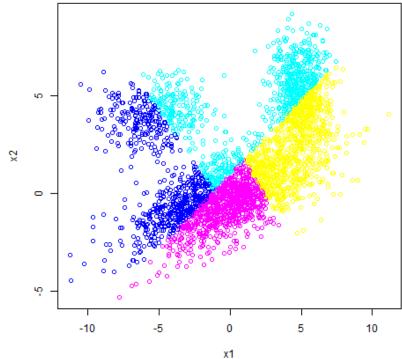


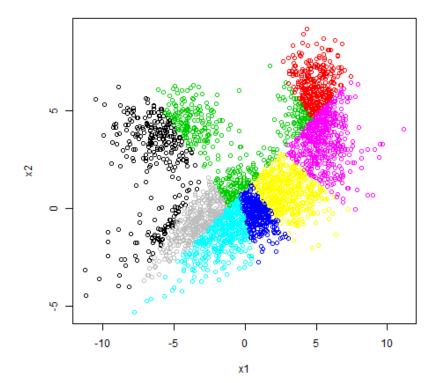
PARTITIONING BY PROJECTING ON RANDOM LINES

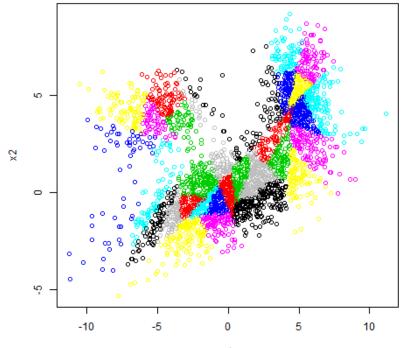






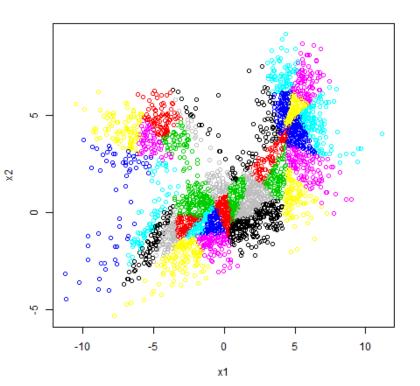






x1

When two points are close, they are likely to end up in the same partition, even under random partitioning

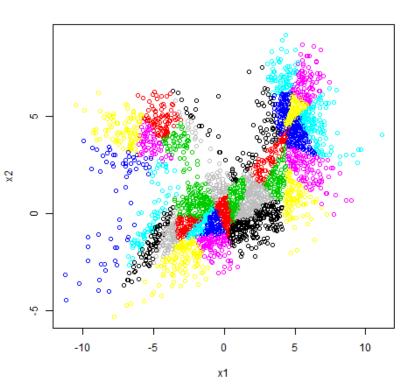


When two points are close,

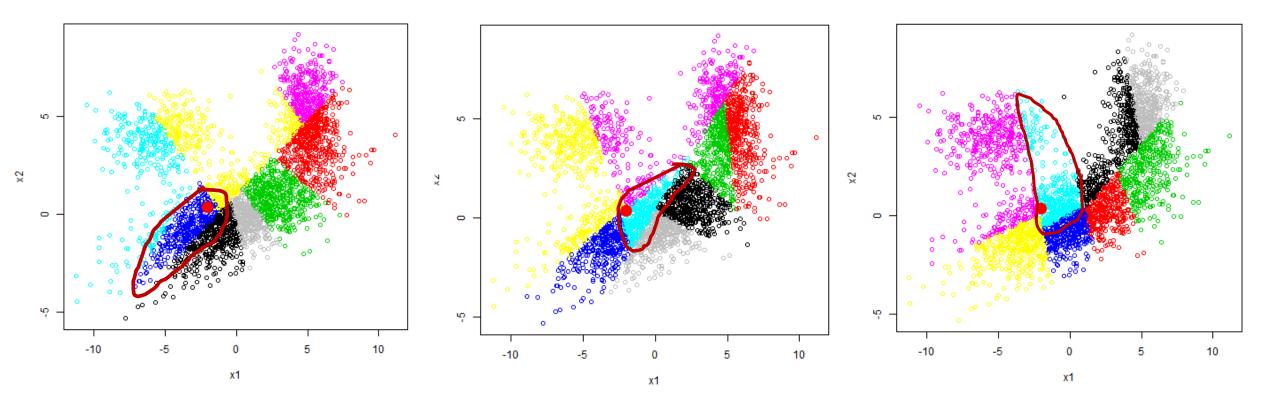
they are **LIKELY** to end up in the same partition,

even under

random partitioning

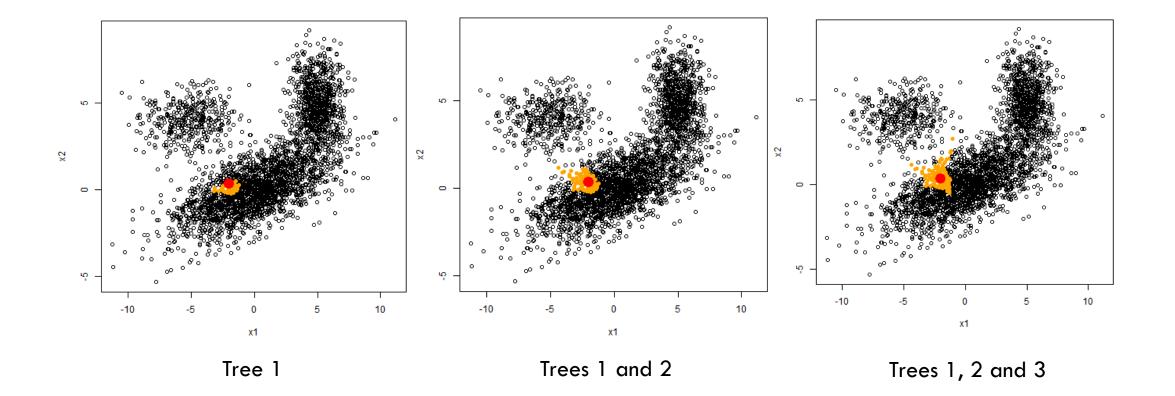


MULTIPLE TREES

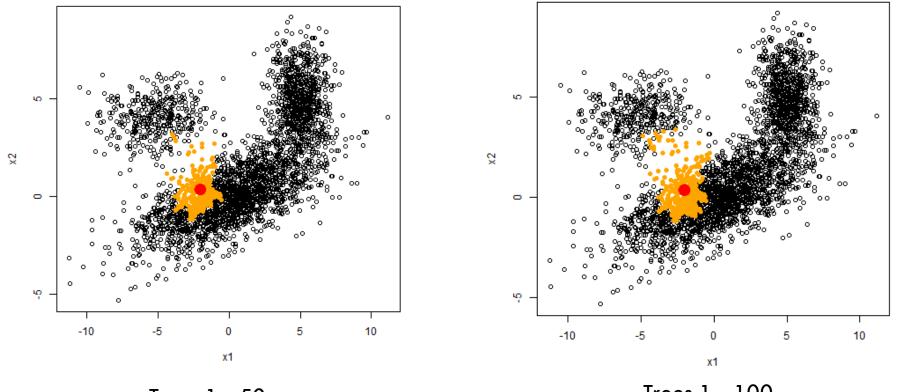


Random tree partitioning is noisy. Build more trees.

ADDING MORE TREES



ADDING MORE TREES

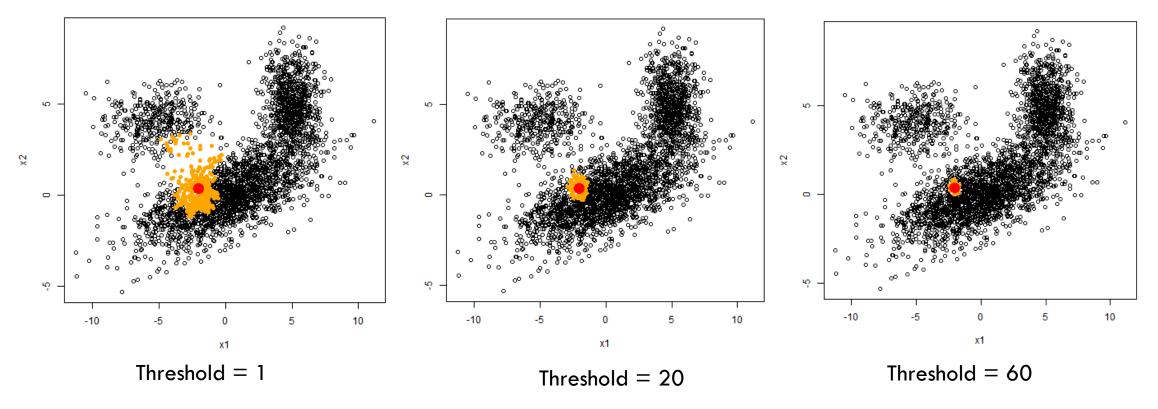


Trees 1 - 50

Trees 1 - 100 STEFAN SAVEV ~ RANDOM PROJECTIONS FOR BIG DATA ~ BERLIN BUZZWORDS ~ JUNE 2015 39

CONSTRAINING THE NEAREST NEIGHBOR REGION

THRESHOLD = In how many trees a "NN candidate" appears

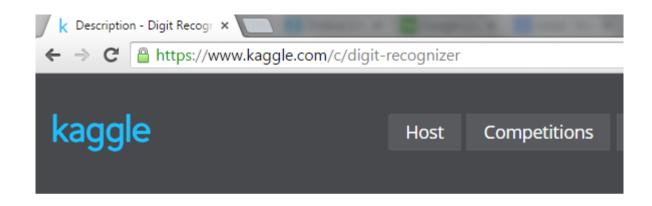


"WE'VE GOT HIM"

OUTLINE

High dimensional data (images, text, clicks)
 Random Projections: Why? What? How?
 Image Search Benchmark

IMAGE SEARCH FOR PREDICTION

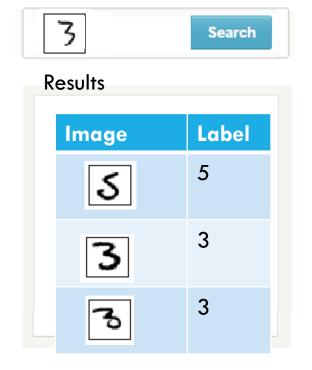


9665407401 3134727121 1742351244 Knowledge • 624 teams
Digit Recognizer

Wed 25 Jul 2012

IMAGE SEARCH FOR PREDICTION

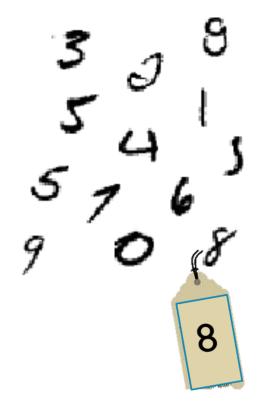
k Description - Digit Recogr ×				
← → C Attps://www.kaggle.com/c/digit-recognizer				
kaggle		Host	Competitions	
9665407401		-	624 teams •	
3134727121	Dig	git Re	ecognizer	
1742351244	• • • • • • • • • • • • • • • • • • •	25 Jul 2011		



Wed 25 Jul 2012

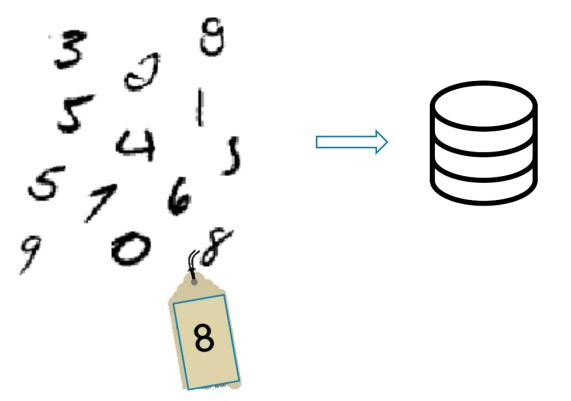
STAGE 1: INDEXING

42 000 examples with labels 784 pixels per image



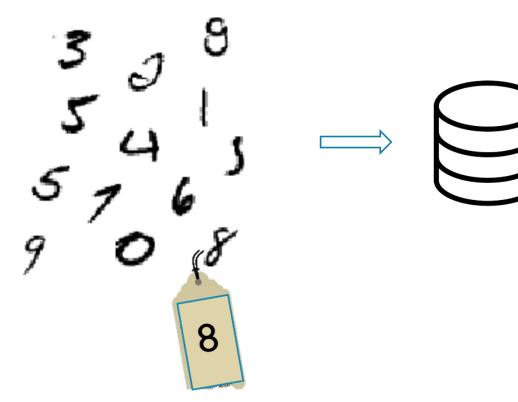
STAGE 1: INDEXING

42 000 examples with labels 784 pixels per image



STAGE 1: INDEXING

42 000 examples with labels 784 pixels per image



index.build(...)

STAGE 2: SEARCH TO PREDICT THE LABEL

Results

lmage	Label
১	5
3	3
З	3

```
index.load('.../file.index')
...
image_vec = read_image(...)
nn = 100 #number of nearest neighbors
results = index.get_nns_by_vector(image_vec,nn)
top_result = results[0]
predicted_label = labels[top_result.id]
```

28 000 test examples

TOOLS

C spotify/annoy

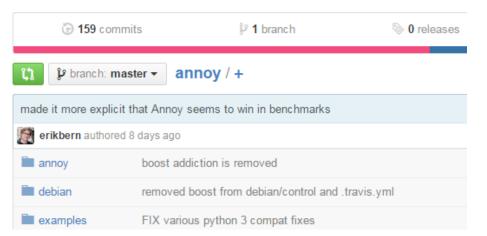
Spotify

×

\mathbf{O}	This repository	Explore	Gist	

spotify / annoy

Approximate Nearest Neighbors in C++/Python optimized for memory usage



stefansavev.com/randomtrees

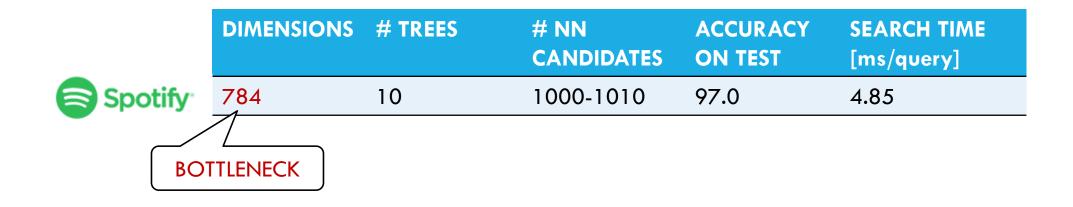
🕠 stefansavev/random-project 🗙 🔽					
C GitHub, Inc. [US] https://github.com/stefansavev/random-projections-at-be					
GitHub This repository	Search	Explore Feature			
stefansavev / random-projections-at-berlinbuzzwords					
Demo of random projections at BerlinBuzzwords 2015					
🕞 3 commits	🕑 1 branch	◎ 0 releases			

random-projections-at-berlinbuzzwords / + 🖗 branch: master 🕶

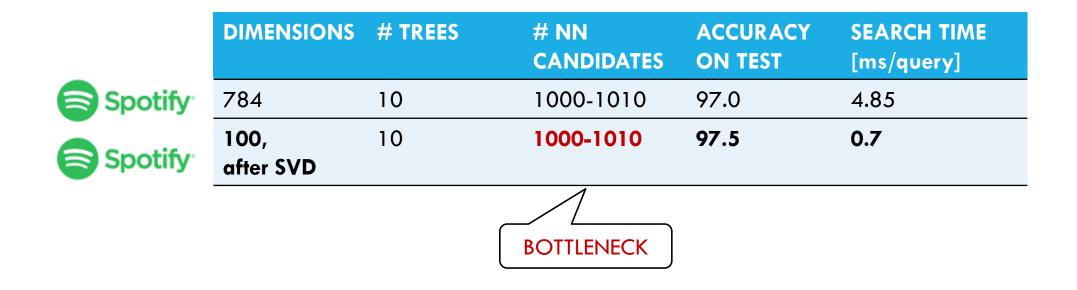
write test predictions in Kaggle format stefansavev authored 2 minutes ago src/main/scala/com/stefansavev/randompro... write test predictions in Kaggle format

📄 .gitignore

initial commit of code

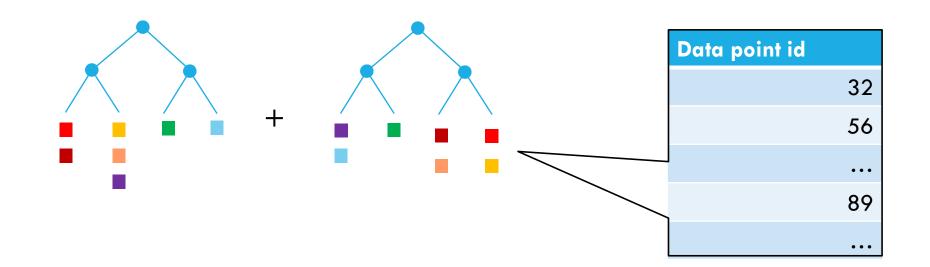


	DIMENSIONS	# TREES	# NN CANDIDATES	ACCURACY ON TEST	SEARCH TIME [ms/query]
Spotify [®]	784	10	1000-1010	97.0	4.85
	100, after SVD	10	1000-1010	97.5	0.7

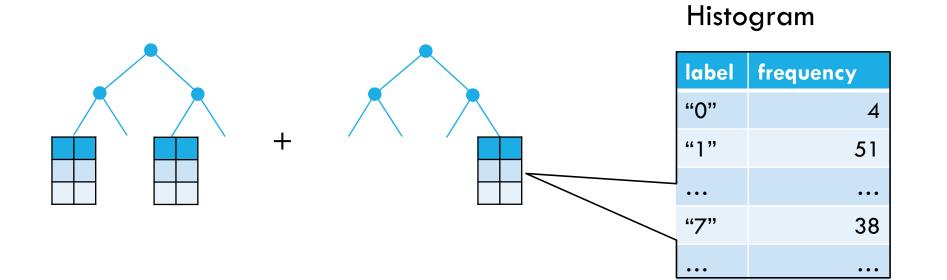


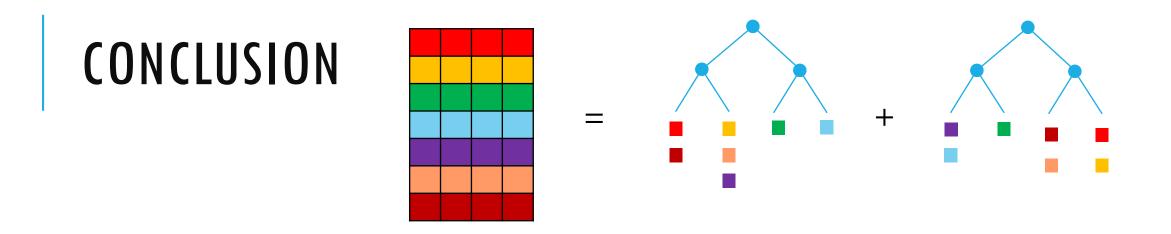
	DIMENSIONS	# TREES	# NN CANDIDATES	ACCURACY ON TEST	SEARCH TIME [ms/query]
Spotify [®]	784	10	1000-1010	97.0	4.85
	100, after SVD	10	1000-1010	97.5	0.7
stefansavev.com/ randomtrees	100, after SVD	40	180 (mean)	97.5	0.36

SAME FOUNDATION FOR SEARCH AND MACHINE LEARNING



SAME FOUNDATION FOR SEARCH AND MACHINE LEARNING





Search in Dense Data

CHEAP method to "explore" data; Makes algorithms FASTER (e.g. SVD, SVM)

THANK YOU!

Stefan Savev

Email: info@stefansavev.com

Blog: stefansavev.com

EXTRA SLIDES

REFERENCES

ADVANTAGES/DISADVANTAGES DIMENSIONALITY REDUCTION

>Advantages

- "Semantic Similarity"
- >"Concentrate the signal"

Disadvantages

- >No exact matches possible
- >Adds noise

RANDOM PROJECTIONS AS HASH FUNCTIONS

0	0	1	0
0	1	1	0
0	0	1	0
0	0	1	0

*

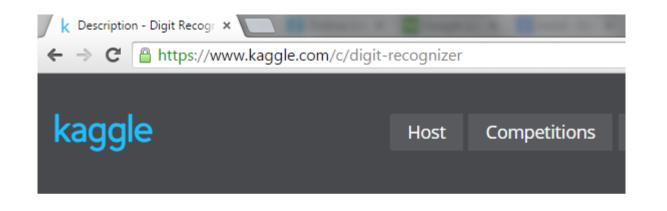
	-1	1	1	-1
	1	-1	1	1
Î	1	1	-1	-1
	-1	1	-1	1

0	0	1	0
0	-1	1	0
0	0	-1	0
0	0	-1	0

1 + 1 - 1 - 1 - 1 = -1

STEFAN SAVEV \sim RANDOM PROJECTIONS FOR BIG DATA \sim Berlin Buzzwords \sim June 2015 61

EXAMPLE-BASED IMAGE SEARCH



9665407401 3134727121 1742351244

Wed 25 Jul 2012

- MNIST image dataset of digits
- Images are digits from 0 to 9
- > 42 000 images for training
- > 28 000 images for test
- > 28 x 28 pixels with values from 0 to 255
- > 784 (=28*28) features
- Dataset is already preprocessed
- Goal is to predict the label of an image

SOME IMPLEMENTATION TRICKS

 \succ sparse random projections \rightarrow combine not all dimension but a small number of them

> apply dimensionality reduction first

 \succ pick better random projections \rightarrow the projected histogram is wide

 \succ project on multiple lines simultaneously \rightarrow Hadamard matrix trick

> reuse random projections via recombination

> cut out a "ball" from the densest region

PCA may help

> use the neighbors of neighbors of a point as additional similarity candidates

advanced search inside the trees with backtracking (KD-tree style)

 \succ generate multiple versions of query/training data (i.e. for image data translate or rotate the image)

[Link to Blog]

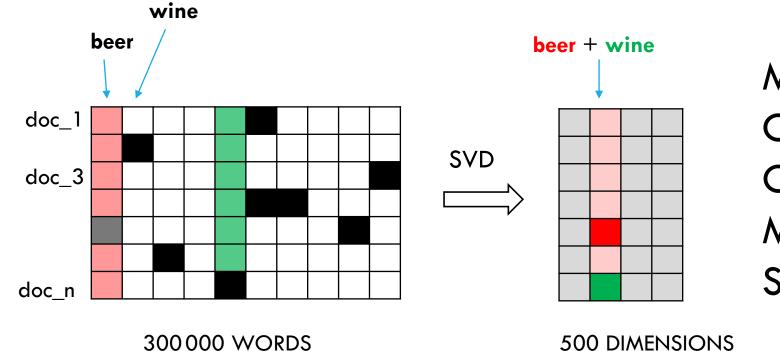
PROJECTION

- Dot product (cosine, similarity)
- View of the dataset
- Overlap with Pattern
- "Geometry" of Search
- Foundation for Search and Machine Learning

WHY RANDOM?

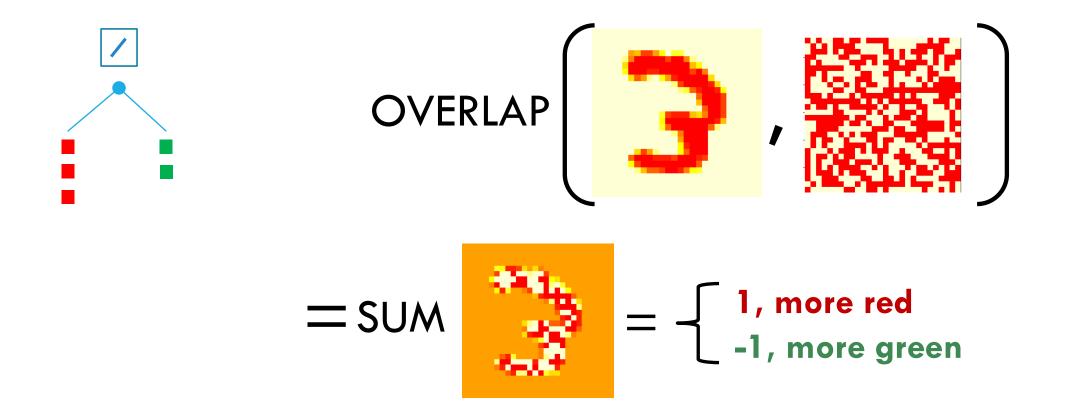
- Cheap (replace optimization with randomization); Simply build more trees
- If we build the perfect tree, it's just one tree. We need more and DIVERSE trees
- In high dimensions all algorithms will have problems, so do the cheapest
- With a few points/dimensions random is not the best choice

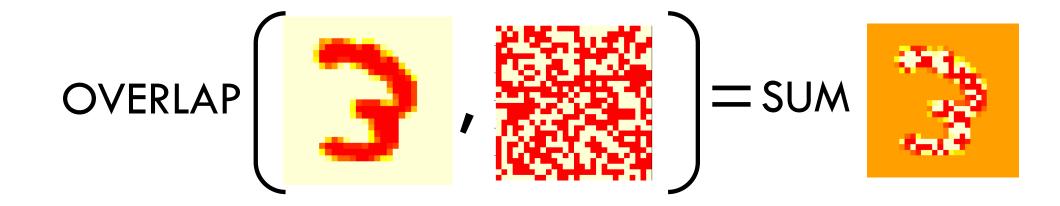
DIMENSIONALITY REDUCTION

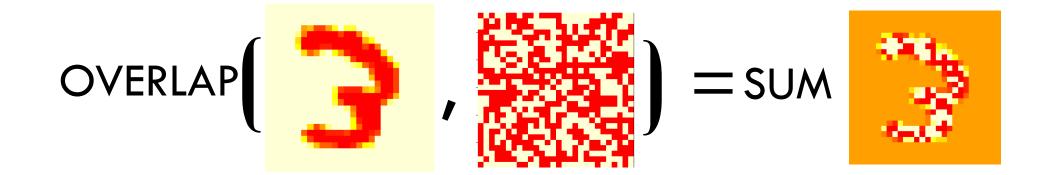


MIXING THE COLUMNS OF THE ORIGINAL MATRIX TO MAXIMIZE SIGNAL TO NOISE

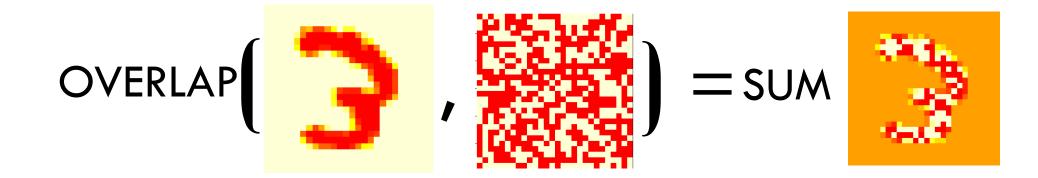
STEFAN SAVEV \sim random projections for Big data \sim Berlin Buzzwords \sim June 2015 66



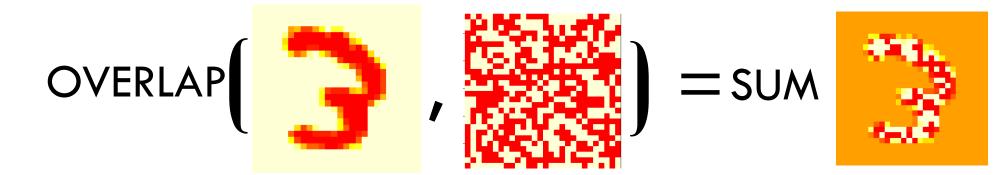




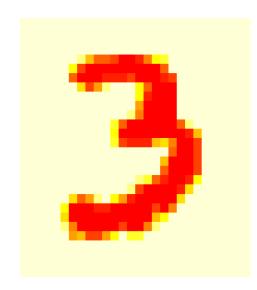
PROJECTION = OVERLAP WITH A PATTERN

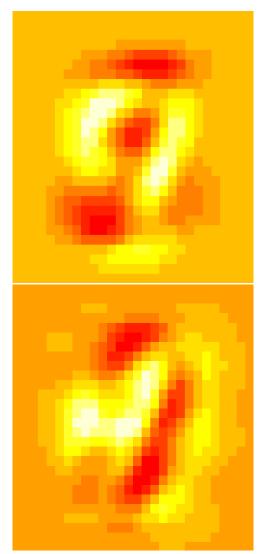


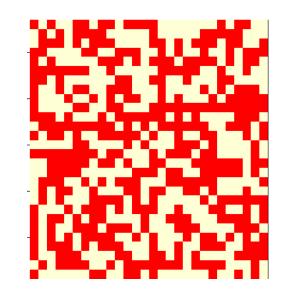
= { 1, if more red pixels than white
 -1, if more white pixels than red



DATA POINT — SVD FEATURE — RANDOM FEATURE







PLATO'S ALEGORY OF THE CAVE

He then explains how the philosopher is like a prisoner who is freed from the cave and comes to understand that the shadows on the wall do not make up reality at all, as he can perceive the true form of reality rather than the mere shadows seen by the prisoners

Source: http://en.wikipedia.org/wiki/Allegory_of_the_Cave

SECRET SAUCE

- How to make it faster?
- How to make it more accurate?
- When does it work?
- Is there something better?

http://stefansavev.com/random-projections-secretsouce.html